Investigation of a Stolarsky Type Inequality for Integrals in Pseudo-analysis

نویسندگان

  • Bayaz Daraby
  • B. Daraby
چکیده

In this paper, we prove a Stolarsky type inequality for pseudo-integrals. More precisely, we show that: ∫ sup [0,1] f(x 1 a+b )dx ≥ ( ∫ sup [0,1] f(x 1 a )dx ) ̄ ( ∫ sup [0,1] f(x 1 b )dx ) , where a, b > 0, f : [0, 1] → [0, 1] is a continuous and strictly decreasing function ( strictly increasing function ) and μ is the sup-measure the same as Theorem 2.4. Also ̄ is represented by an increasing multiplicative generator g. MSC 2010: 03E72, 26E50, 28E10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of the Lyapunov type inequality for pseudo-integrals

We prove two kinds of Lyapunov type inequalities for pseudo-integrals. One discusses pseudo-integrals where pseudo-operations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring 0; 1 ½ Š; sup; ð Þ , where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities. As a generali...

متن کامل

Stolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions

Recently, Flores-Franulič et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequal...

متن کامل

On Stolarsky inequality for Sugeno and Choquet integrals

Keywords: Fuzzy measure Sugeno integral Choquet integral Stolarsky's inequality a b s t r a c t Recently Flores-Franulič, Román-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure k. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolar-sky inequality for Choquet integral is ...

متن کامل

Results of the Chebyshev type inequality for Pseudo-integral

In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results  to the case of comonotone functions.

متن کامل

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011